In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack exceeds its critical value.Crane, Dale: Dictionary of Aeronautical Terms, third edition, p. 486. Aviation Supplies & Academics, 1997. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil – including its shape, size, and finish – and Reynolds number.
Stalls in fixed-wing aircraft are often experienced as a sudden reduction in lift. It may be caused either by the pilot increasing the wing's angle of attack or by a decrease in the critical angle of attack. The former may be due to slowing down (below stall speed), the latter by accretion of ice on the wings (especially if the ice is rough). A stall does not mean that the engine(s) have stopped working, or that the aircraft has stopped moving—the effect is the same even in an Unpowered flight glider aircraft. Thrust vectoring in aircraft is used to maintain altitude or controlled flight with wings stalled by replacing lost wing lift with engine or propeller thrust, thereby giving rise to post-stall technology.Benjamin Gal-Or, Vectored Propulsion, Supermaneuverability, and Robot Aircraft, Springer Verlag, 1990, , USAF & NATO Report RTO-TR-015 AC/323/(HFM-015)/TP-1 (2001)
Because stalls are most commonly discussed in connection with aviation, this article discusses stalls as they relate mainly to aircraft, in particular fixed-wing aircraft. The principles of stall discussed here translate to foils in other fluids as well.
Stalling is caused by flow separation which, in turn, is caused by the air flowing against a rising pressure. Whitford Design For Air Combat, Ray Whitford 1987, Jane's Publishing Company limited, , p. 15 describes three types of stall: trailing-edge, leading-edge and thin-aerofoil, each with distinctive Cl~alpha features. For the trailing-edge stall, separation begins at small angles of attack near the trailing edge of the wing while the rest of the flow over the wing remains attached. As angle of attack increases, the separated regions on the top of the wing increase in size as the flow separation moves forward, and this hinders the ability of the wing to create lift. This is shown by the reduction in lift-slope on a Cl~alpha curve as the lift nears its maximum value. The separated flow usually causes buffeting. Understanding Aerodynamics – Arguing From The Real Physics, Doug McLean 2013, John Wiley & Sons Ltd., , p. 322 Beyond the critical angle of attack, separated flow is so dominant that additional increases in angle of attack cause the lift to fall from its peak value.
Piston-engined and early jet transports had very good stall behaviour with pre-stall buffet warning and, if ignored, a straight nose-drop for a natural recovery. Wing developments that came with the introduction of turbo-prop engines introduced unacceptable stall behaviour. Leading-edge developments on high-lift wings, and the introduction of rear-mounted engines and high-set tailplanes on the next generation of jet transports, also introduced unacceptable stall behaviour. The probability of achieving the stall speed inadvertently, a potentially hazardous event, had been calculated, in 1965, at about once in every 100,000 flights, often enough to justify the cost of development of warning devices, such as stick shakers, and devices to automatically provide an adequate nose-down pitch, such as stick pushers. Handling The Big Jets – Third Edition, D.P. Davies, Civil Aviation Authority, pp. 113–115
When the mean angle of attack of the wings is beyond the stall a spin, which is an autorotation of a stalled wing, may develop. A spin follows departures in roll, yaw and pitch from balanced flight. For example, a roll is naturally damped with an unstalled wing, but with wings stalled the damping moment is replaced with a propelling moment. The Design Of The Aeroplane, Darrol Stinton 1983, BSP Professional Books, , p. 464
The information in a graph of this kind is gathered using a model of the airfoil in a wind tunnel. Because aircraft models are normally used, rather than full-size machines, special care is needed to make sure that data is taken in the same Reynolds number regime (or scale speed) as in free flight. The separation of flow from the upper wing surface at high angles of attack is quite different at low Reynolds number from that at the high Reynolds numbers of real aircraft. In particular at high Reynolds numbers the flow tends to stay attached to the airfoil for longer because the inertial forces are dominant with respect to the viscous forces which are responsible for the flow separation ultimately leading to the aerodynamic stall. For this reason wind tunnel results carried out at lower speeds and on smaller scale models of the real life counterparts often tend to overestimate the aerodynamic stall angle of attack. High-pressure wind tunnels are one solution to this problem.
In general, steady operation of an aircraft at an angle of attack above the critical angle is not possible because, after exceeding the critical angle, the loss of lift from the wing causes the nose of the aircraft to fall, reducing the angle of attack again. This nose drop, independent of control inputs, indicates the pilot has actually stalled the aircraft.Clancy, L.J., Aerodynamics, Sections 5.28 and 16.48Anderson, J.D., A History of Aerodynamics, pp. 296–311
This graph shows the stall angle, yet in practice most pilot operating handbooks (POH) or generic flight manuals describe stalling in terms of airspeed. This is because all aircraft are equipped with an airspeed indicator, but fewer aircraft have an angle of attack indicator. An aircraft's stalling speed is published by the manufacturer (and is required for certification by flight testing) for a range of weights and flap positions, but the stalling angle of attack is not published.
As speed reduces, angle of attack has to increase to keep lift constant until the critical angle is reached. The airspeed at which this angle is reached is the (1g, unaccelerated) stalling speed of the aircraft in that particular configuration. Deploying flaps/slats decreases the stall speed to allow the aircraft to take off and land at a lower speed.
In most light aircraft, as the stall is reached, the aircraft will start to descend (because the wing is no longer producing enough lift to support the aircraft's weight) and the nose will pitch down. Recovery from the stall involves lowering the aircraft nose, to decrease the angle of attack and increase the air speed, until smooth air-flow over the wing is restored. Normal flight can be resumed once recovery is complete.FAA Airplane flying handbook Chapter 4, p. 7 The maneuver is normally quite safe, and, if correctly handled, leads to only a small loss in altitude (). It is taught and practised in order for pilots to recognize, avoid, and recover from stalling the aircraft.14 CFR part 61 A pilot is required to demonstrate competency in controlling an aircraft during and after a stall for certification in the United States,Federal Aviation Regulations Part25 section 201 and it is a routine maneuver for pilots when getting to know the handling of an unfamiliar aircraft type. The only dangerous aspect of a stall is a lack of altitude for recovery.
A special form of asymmetric stall in which the aircraft also rotates about its yaw axis is called a spin. A spin can occur if an aircraft is stalled and there is an asymmetric yawing moment applied to it.FAA Airplane flying handbook Chapter 4, pp. 12–16 This yawing moment can be aerodynamic (sideslip angle, rudder, adverse yaw from the ailerons), thrust related (p-factor, one engine inoperative on a multi-engine non-centreline thrust aircraft), or from less likely sources such as severe turbulence. The net effect is that one wing is stalled before the other and the aircraft descends rapidly while rotating, and some aircraft cannot recover from this condition without correct pilot control inputs (which must stop yaw) and loading.14 CFR part 23 A new solution to the problem of difficult (or impossible) stall-spin recovery is provided by the ballistic parachute recovery system.
The most common stall-spin scenarios occur on takeoff (departure stall) and during landing (base to final turn) because of insufficient airspeed during these maneuvers. Stalls also occur during a go-around manoeuvre if the pilot does not properly respond to the out-of-trim situation resulting from the transition from low power setting to high power setting at low speed.FAA Airplane flying handbook Chapter 4, pp. 11–12 Stall speed is increased when the wing surfaces are contaminated with ice or frost creating a rougher surface, and heavier airframe due to ice accumulation.
Stalls occur not only at slow airspeed, but at any speed when the wings exceed their critical angle of attack. Attempting to increase the angle of attack at 1g by moving the control column back normally causes the aircraft to climb. However, aircraft often experience higher g-forces, such as when turning steeply or pulling out of a dive. In these cases, the wings are already operating at a higher angle of attack to create the necessary force (derived from lift) to accelerate in the desired direction. Increasing the g-loading still further, by pulling back on the controls, can cause the stalling angle to be exceeded, even though the aircraft is flying at a high speed.FAA Airplane flying handbook Chapter 4, p. 9 These "high-speed stalls" produce the same buffeting characteristics as 1g stalls and can also initiate a spin if there is also any yawing.
The actual stall speed will vary depending on the airplane's weight, altitude, configuration, and vertical and lateral acceleration. Propeller slipstream reduces the stall speed by energizing the flow over the wings.
Speed definitions vary and include:
An airspeed indicator, for the purpose of flight-testing, may have the following markings: the bottom of the white arc indicates VS0 at maximum weight, while the bottom of the green arc indicates VS1 at maximum weight. While an aircraft's VS speed is computed by design, its VS0 and VS1 speeds must be demonstrated empirically by flight testing. Flight testing of fixed wing aircraft. Ralph D. Kimberlin
In a banked turn, the lift required is equal to the weight of the aircraft plus extra lift to provide the centripetal force necessary to perform the turn:McCormick, Barnes W. (1979), Aerodynamics, Aeronautics and Flight Mechanics, p. 464, John Wiley & Sons, New York
where:
To achieve the extra lift, the lift coefficient, and so the angle of attack, will have to be higher than it would be in straight and level flight at the same speed. Therefore, given that the stall always occurs at the same critical angle of attack,Clancy, L.J., Aerodynamics, Sections 5.8 and 5.22 by increasing the load factor (e.g. by tightening the turn) the critical angle will be reached at a higher airspeed:Clancy, L.J., Aerodynamics, Section 5.22Clancy, L.J., Aerodynamics, Equation 14.11McCormick, Barnes W. (1979), Aerodynamics, Aeronautics and Flight Mechanics, Equation 7.57
where:
The table that follows gives some examples of the relation between the angle of bank and the square root of the load factor. It derives from the trigonometric relation (Cosecant) between and .
For example, in a turn with bank angle of 45°, Vst is 19% higher than Vs.
According to Federal Aviation Administration (FAA) terminology, the above example illustrates a so-called turning flight stall, while the term accelerated is used to indicate an accelerated turning stall only, that is, a turning flight stall where the airspeed decreases at a given rate.
The tendency of powerful propeller aircraft to roll in reaction to engine torque creates a risk of accelerated stalls. When an aircraft such as a Mitsubishi MU-2 is flying close to its stall speed, the sudden application of full power may cause it to roll, creating the same aerodynamic conditions that induce an accelerated stall in turning flight even if the pilot did not deliberately initiate a turn. Pilots of such aircraft are trained to avoid sudden and drastic increases in power at low altitude and low airspeed as it may be difficult to recover from an accelerated stall under these conditions.
A notable example of an air accident involving a low-altitude turning flight stall is the 1994 Fairchild Air Force Base B-52 crash.
Dynamic stall is an effect most associated with helicopters and flapping wings, though also occurs in wind turbines, and due to gusting airflow. During forward flight, some regions of a helicopter blade may incur flow that reverses (compared to the direction of blade movement), and thus includes rapidly changing angles of attack. Oscillating (flapping) wings, such as those of insects like the bumblebee—may rely almost entirely on dynamic stall for lift production, provided the oscillations are fast compared to the speed of flight, and the angle of the wing changes rapidly compared to airflow direction.
Stall delay can occur on airfoils subject to a high angle of attack and a three-dimensional flow. When the angle of attack on an airfoil is increasing rapidly, the flow will remain substantially attached to the airfoil to a significantly higher angle of attack than can be achieved in steady-state conditions. As a result, the stall is delayed momentarily and a lift coefficient significantly higher than the steady-state maximum is achieved. The effect was first noticed on propellers.
Brian Trubshaw"Low Speed Handling with Special Reference to the Super Stall". Trubshaw, Appendix III in "Trubshaw Test Pilot" Trubshaw and Edmondson, Sutton Publishing 1998, , p. 166. gives a broad definition of deep stall as penetrating to such angles of attack that pitch control effectiveness is reduced by the wing and nacelle wakes. He also gives a definition that relates deep stall to a locked-in condition where recovery is impossible. This is a single value of , for a given aircraft configuration, where there is no pitching moment, i.e. a trim point.
Typical values both for the range of deep stall, as defined above, and the locked-in trim point are given for the Douglas DC-9 Series 10 by Schaufele."Applied Aerodynamics at the Douglas Aircraft Company-A Historical Perspective". Roger D. Schaufele, 37th AIAA Aerospace Sciences Meeting and Exhibit, January 11–14, 1999/Reno, NV. Fig. 26. Deep Stall Pitching Moments. These values are from wind-tunnel tests for an early design. The final design had no locked-in trim point, so recovery from the deep stall region was possible, as required to meet certification rules. Normal stall beginning at the "g break" (sudden decrease of the vertical load factor) was at , deep stall started at about 30°, and the locked-in unrecoverable trim point was at 47°.
The very high for a deep stall locked-in condition occurs well beyond the normal stall but can be attained very rapidly, as the aircraft is unstable beyond the normal stall and requires immediate action to arrest it. The loss of lift causes high sink rates, which, together with the low forward speed at the normal stall, give a high with little or no rotation of the aircraft."Accident Report No. EW/C/039, Appendix IV in "Trubshaw Test Pilot". Trubshaw and Edmondson, Sutton Publishing 1998, , p. 182. BAC 1-11 G-ASHG, during stall flight tests before the type was modified to prevent a locked-in deep-stall condition, descended at over and struck the ground in a flat attitude moving only forward after initial impact. Sketches showing how the wing wake blankets the tail may be misleading if they imply that deep stall requires a high body angle. Taylor and Ray show how the aircraft attitude in the deep stall is relatively flat, even less than during the normal stall, with very high negative flight-path angles.
Effects similar to deep stall had been known to occur on some aircraft designs before the term was coined. A prototype Gloster Javelin (serial WD808) was lost in a crash on 11 June 1953 to a "locked-in" stall. ASN Wikibase Occurrence # 20519. Retrieved 4 September 2011. However, Waterton"The Quick and the Dead". W. A. Waterton, Frederick Mueller, London 1956, p. 216. states that the trimming tailplane was found to be the wrong way for recovery. Low-speed handling tests were being done to assess a new wing. Handley Page Victor XL159 was lost to a "stable stall" on 23 March 1962. A Tale of Two Victors. . Retrieved 4 September 2011. It had been clearing the fixed droop leading edge with the test being stall approach, landing configuration, C of G aft. The brake parachute had not been streamed, as it may have hindered rear crew escape."The Handley Page Victor Volume 2". Roger R. Brooks, Pen & Sword Aviation 2007, , p. 250.
The name "deep stall" first came into widespread use after the crash of the prototype BAC 1-11 G-ASHG on 22 October 1963, which killed its crew."Report on the Accident to B.A.C. One-Eleven G-ASHG at Cratt Hill, near Chicklade, Wiltshire on 22nd October 1963", Ministry of Aviation C.A.P. 219, 1965. This led to changes to the aircraft, including the installation of a stick shaker (see below) to clearly warn the pilot of an impending stall. Stick shakers are now a standard part of commercial airliners. Nevertheless, the problem continues to cause accidents; on 3 June 1966, a Hawker Siddeley Trident (G-ARPY), was lost to deep stall; deep stall is suspected to be cause of another Trident (the British European Airways Flight 548 G-ARPI) crash – known as the "Staines Disaster" – on 18 June 1972, when the crew failed to notice the conditions and had disabled the stall-recovery system.AIB Report 4/73, p. 54. On 3 April 1980, a prototype of the Canadair Challenger business jet crashed after initially entering a deep stall from 17,000 ft and having both engines flame-out. It recovered from the deep stall after deploying the anti-spin parachute but crashed after being unable to jettison the chute or relight the engines. One of the test pilots was unable to escape from the aircraft in time and was killed."Winging It The Making Of The Canadair Challenger". Stuart Logie, Macmillan Canada 1992, , p. 169. On 26 July 1993, a Canadair CRJ-100 was lost in flight testing due to a deep stall. It has been reported that a Boeing 727 entered a deep stall in a flight test, but the pilot was able to rock the airplane to increasingly higher bank angles until the nose finally fell through and normal control response was recovered. The crash of West Caribbean Airways Flight 708 in 2005 was also attributed to a deep stall.
Deep stalls can occur at apparently normal pitch attitudes, if the aircraft is descending quickly enough.Airplane Flying Handbook (FAA-H-8083-3B), chapter 15, p. 15–13. The airflow is coming from below, so the angle of attack is increased. Early speculation on reasons for the crash of Air France Flight 447 blamed an unrecoverable deep stall, since it descended in an almost flat attitude (15°) at an angle of attack of 35° or more. However, it was held in a stalled glide by the pilots, who held the nose up amid all the confusion of what was actually happening to the aircraft.
Canard-configured aircraft are also at risk of getting into a deep stall. Two Velocity XL aircraft crashed due to locked-in deep stalls.Cox, Jack, Velocity... Solving a Deep Stall Riddle, EAA Sport Aviation, July 1991, pp. 53–59. Testing revealed that the addition of leading-edge cuffs to the outboard wing prevented the aircraft from getting into a deep stall. The Piper Advanced Technologies PAT-1, N15PT, another canard-configured aircraft, also crashed in an accident attributed to a deep stall. ASN Wikibase Occurrence # 10732. Retrieved 4 September 2011. Wind-tunnel testing of the design at the NASA Langley Research Center showed that it was vulnerable to a deep stall.Williams, L. J.; Johnson, J. L. Jr. and Yip, L. P., Some Aerodynamic Considerations For Advanced Aircraft Configurations, AIAA paper 84-0562, January 1984.
In the early 1980s, a Schweizer SGS 1-36 sailplane was modified for NASA's controlled deep-stall flight program. Schweizer-1-36 index: Schweizer SGS 1–36 Photo Gallery Contact Sheet .
A swept wing has a higher lift coefficient on its outer panels than on the inner wing, causing them to reach their maximum lift capability first and to stall first. This is caused by the downwash pattern associated with swept/tapered wings.Fundamentals Of Flight – Second Edition, Richard S.Shevell, Prentice Hall 1983, , p.244 To delay tip stall the outboard wing is given washout to reduce its angle of attack. The root can also be modified with a suitable leading-edge and airfoil section to make sure it stalls before the tip. However, when taken beyond stalling incidence the tips may still become fully stalled before the inner wing despite initial separation occurring inboard. This causes pitch-up after the stall and entry to a super-stall on those aircraft with super-stall characteristics.Handling The Big Jets – Third Edition, D.P.Davies, Civil Aviation Authority, p.121 Span-wise flow of the boundary layer is also present on swept wings and causes tip stall. The amount of boundary layer air flowing outboard can be reduced by generating vortices with a leading-edge device such as a fence, notch, saw tooth or a set of vortex generators behind the leading edge.Flightwise – Principles Of Aircraft Flight, Chris Carpenter 1996, Airlife Publishing Ltd., , p.369
Stall warning systems often involve inputs from a broad range of sensors and systems to include a dedicated angle of attack sensor.
Blockage, damage, or inoperation of stall and angle of attack (AOA) probes can lead to unreliability of the stall warning and cause the stick pusher, overspeed warning, autopilot, and yaw damper to malfunction.
If a forward canard is used for pitch control, rather than an aft tail, the canard is designed to meet the airflow at a slightly greater angle of attack than the wing. Therefore, when the aircraft pitch increases abnormally, the canard will usually stall first, causing the nose to drop and so preventing the wing from reaching its critical AOA. Thus, the risk of main-wing stalling is greatly reduced. However, if the main wing stalls, recovery becomes difficult, as the canard is more deeply stalled, and angle of attack increases rapidly."Airplane stability and control" by Malcolm J. Abzug, E. Eugene Larrabee. Chapter 17. .
If an aft tail is used, the wing is designed to stall before the tail. In this case, the wing can be flown at higher lift coefficient (closer to stall) to produce more overall lift.
Most military combat aircraft have an angle of attack indicator among the pilot's instruments, which lets the pilot know precisely how close to the stall point the aircraft is. Modern airliner instrumentation may also measure angle of attack, although this information may not be directly displayed on the pilot's display, instead driving a stall warning indicator or giving performance information to the flight computer (for fly-by-wire systems).
Unlike powered airplanes, which can control descent by increasing or decreasing thrust, gliders have to increase drag to increase the rate of descent. In high-performance gliders, spoiler deployment is extensively used to control the approach to landing.
Spoilers can also be thought of as "lift reducers" because they reduce the lift of the wing in which the spoiler resides. For example, an uncommanded roll to the left could be reversed by raising the right wing spoiler (or only a few of the spoilers present in large airliner wings). This has the advantage of avoiding the need to increase lift in the wing that is dropping (which may bring that wing closer to stalling).
The aircraft engineer Juan de la Cierva worked on his "Autogiro" project to develop a rotary wing aircraft which, he hoped, would be unable to stall and which therefore would be safer than aeroplanes. In developing the resulting "autogyro" aircraft, his solution of numerous engineering problems related to the rotary wing led to the development of the helicopter.
> 30° 1.07 45° 1.19 60° 1.41
Types
Dynamic stall
Deep stall
Tip stall
Warning and safety devices
Flight beyond the stall
Spoilers
History
See also
Notes
|
|